B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2014
MT 5509/MT 5508/MT 5502-ALGEBRAIC STRUCTURE - II

Date: 05/11/2014
Time : 09:00-12:00

Answer ALL questions:
\square
Dept. No.

$\underline{\text { PART - A }}$

 Max. : 100 Marks1. Define a vector space over a field F.
2. Give an example to show that the union of two subspaces of a vector space V need not be a subspace of V .
3. Prove that any $n+l$ vectors in F_{n} are linearly independent.
4. Define Kernel and Image of a homomorphism T.
5. Define an algebra over a field F .
6. What is eigen value and eigen vector?
7. Define trace of a matrix A.
8. When do you say that a matrix is invertible?
9. When is a linear transformation T on V said to be unitary?
10. Define rank of a matrix.

PART - B

Answer any FIVE questions:
11. Show that the set of all $m \mathrm{x} n$ matrices over F is a vector space under matrix addition and scalar multiplication of a matrix.
12. Prove that the intersection of two subspaces of a vector space V is a subspace of V.
13. If V is a vector space of finite dimension and W is a subspace of V , then prove that $\operatorname{dim} \mathrm{V} / \mathrm{W}=$ $\operatorname{dim} \mathrm{V}-\operatorname{dim} \mathrm{W}$.
14. Prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is non-zero.
15. Prove that $T \in A(V)$ is invertible if and only if whenever $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$ are in V and linearly independent, then $\mathrm{T}\left(\mathrm{v}_{1}\right), \mathrm{T}\left(\mathrm{v}_{2}\right), \ldots \mathrm{T}\left(\mathrm{v}_{\mathrm{n}}\right)$ are also linearly independent.
16. Show that any square matrix can be expressed uniquely as the sum of a symmetric and skew symmetric matrices.
17. If V has dimension n and $T \in A(V)$ then prove that the rank of T is equal to the rank of the corresponding matrix $m(T)$ in F_{n}.
18. Show that the system of equation $x+2 y+z=11,4 x+6 y+5 z=8 \& 2 x+2 y+3 z=19$ is inconsistent.

PART - C

19. Let V be a vector space over a field F and W be a subspace of V . Prove that V / W is a vector space over F.
20. a) If $\mathrm{S}, \mathrm{T} \in \mathrm{A}(\mathrm{V})$ then prove the following:
(i) $\quad \operatorname{rank}(\mathrm{ST}) \leq \operatorname{rank}$ of T
(ii) rank (ST) \leq rank of S
(iii) $\operatorname{rank}(\mathrm{ST})=\operatorname{rank}$ of $(\mathrm{TS})=\operatorname{rank}$ of T for an invertible S in $\mathrm{A}(\mathrm{V})$.
b) If V is a vector space over F , then define $\operatorname{Hom}(\mathrm{V}, \mathrm{V})$ and prove that $\operatorname{Hom}(\mathrm{V}, \mathrm{V})$ is an algebra ever the field F .
21. Prove that every finite dimensional inner product space V has a orthonormal set as a basis.
22. Verify Cayley Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}1 & 3 & 2 \\ 0 & 1 & -1 \\ 0 & -1 & -2\end{array}\right)$.
